Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

Identifieur interne : 000A94 ( Main/Exploration ); précédent : 000A93; suivant : 000A95

Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

Auteurs : Celeste C. Goh [États-Unis] ; Krystal M. Roggerson [États-Unis] ; Hai-Chon Lee ; Lucy Golden-Mason [États-Unis] ; Hugo R. Rosen [États-Unis] ; Young S. Hahn [États-Unis]

Source :

RBID : pubmed:26826241

Descripteurs français

English descriptors

Abstract

The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.

DOI: 10.4049/jimmunol.1501881
PubMed: 26826241
PubMed Central: PMC4761460


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.</title>
<author>
<name sortKey="Goh, Celeste C" sort="Goh, Celeste C" uniqKey="Goh C" first="Celeste C" last="Goh">Celeste C. Goh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Roggerson, Krystal M" sort="Roggerson, Krystal M" uniqKey="Roggerson K" first="Krystal M" last="Roggerson">Krystal M. Roggerson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lee, Hai Chon" sort="Lee, Hai Chon" uniqKey="Lee H" first="Hai-Chon" last="Lee">Hai-Chon Lee</name>
<affiliation>
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; Wide River Institute of Immunology, Seoul National University, Gangwon 25159, Korea; and.</nlm:affiliation>
<wicri:noCountry code="subField">Korea; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Golden Mason, Lucy" sort="Golden Mason, Lucy" uniqKey="Golden Mason L" first="Lucy" last="Golden-Mason">Lucy Golden-Mason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rosen, Hugo R" sort="Rosen, Hugo R" uniqKey="Rosen H" first="Hugo R" last="Rosen">Hugo R. Rosen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Young S" sort="Hahn, Young S" uniqKey="Hahn Y" first="Young S" last="Hahn">Young S. Hahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; ysh5e@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:regionArea>
<wicri:noRegion>Charlottesville</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26826241</idno>
<idno type="pmid">26826241</idno>
<idno type="doi">10.4049/jimmunol.1501881</idno>
<idno type="pmc">PMC4761460</idno>
<idno type="wicri:Area/Main/Corpus">000B15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B15</idno>
<idno type="wicri:Area/Main/Curation">000B15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B15</idno>
<idno type="wicri:Area/Main/Exploration">000B15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.</title>
<author>
<name sortKey="Goh, Celeste C" sort="Goh, Celeste C" uniqKey="Goh C" first="Celeste C" last="Goh">Celeste C. Goh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Roggerson, Krystal M" sort="Roggerson, Krystal M" uniqKey="Roggerson K" first="Krystal M" last="Roggerson">Krystal M. Roggerson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lee, Hai Chon" sort="Lee, Hai Chon" uniqKey="Lee H" first="Hai-Chon" last="Lee">Hai-Chon Lee</name>
<affiliation>
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; Wide River Institute of Immunology, Seoul National University, Gangwon 25159, Korea; and.</nlm:affiliation>
<wicri:noCountry code="subField">Korea; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Golden Mason, Lucy" sort="Golden Mason, Lucy" uniqKey="Golden Mason L" first="Lucy" last="Golden-Mason">Lucy Golden-Mason</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rosen, Hugo R" sort="Rosen, Hugo R" uniqKey="Rosen H" first="Hugo R" last="Rosen">Hugo R. Rosen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Colorado</region>
</placeName>
<wicri:cityArea>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Young S" sort="Hahn, Young S" uniqKey="Hahn Y" first="Young S" last="Hahn">Young S. Hahn</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; ysh5e@virginia.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville</wicri:regionArea>
<wicri:noRegion>Charlottesville</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arginase (metabolism)</term>
<term>Arginine (metabolism)</term>
<term>Cell Line (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Hepacivirus (immunology)</term>
<term>Hepatitis C (genetics)</term>
<term>Hepatitis C (immunology)</term>
<term>Hepatitis C (metabolism)</term>
<term>Hepatitis C (virology)</term>
<term>Humans (MeSH)</term>
<term>Interferon-gamma (biosynthesis)</term>
<term>Killer Cells, Natural (immunology)</term>
<term>Killer Cells, Natural (metabolism)</term>
<term>Leukocytes, Mononuclear (immunology)</term>
<term>Leukocytes, Mononuclear (metabolism)</term>
<term>Leukocytes, Mononuclear (virology)</term>
<term>Myeloid Cells (immunology)</term>
<term>Myeloid Cells (metabolism)</term>
<term>Myeloid Cells (virology)</term>
<term>RNA Processing, Post-Transcriptional (MeSH)</term>
<term>Sialic Acid Binding Ig-like Lectin 3 (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agranulocytes (immunologie)</term>
<term>Agranulocytes (métabolisme)</term>
<term>Agranulocytes (virologie)</term>
<term>Arginase (métabolisme)</term>
<term>Arginine (métabolisme)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cellules myéloïdes (immunologie)</term>
<term>Cellules myéloïdes (métabolisme)</term>
<term>Cellules myéloïdes (virologie)</term>
<term>Cellules tueuses naturelles (immunologie)</term>
<term>Cellules tueuses naturelles (métabolisme)</term>
<term>Hepacivirus (immunologie)</term>
<term>Humains (MeSH)</term>
<term>Hépatite C (génétique)</term>
<term>Hépatite C (immunologie)</term>
<term>Hépatite C (métabolisme)</term>
<term>Hépatite C (virologie)</term>
<term>Interféron gamma (biosynthèse)</term>
<term>Lectine-3 de type Ig liant l'acide sialique (métabolisme)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Maturation post-transcriptionnelle des ARN (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Interferon-gamma</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arginase</term>
<term>Arginine</term>
<term>Sialic Acid Binding Ig-like Lectin 3</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Interféron gamma</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Hepatitis C</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hépatite C</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Agranulocytes</term>
<term>Cellules myéloïdes</term>
<term>Cellules tueuses naturelles</term>
<term>Hepacivirus</term>
<term>Hépatite C</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Hepacivirus</term>
<term>Hepatitis C</term>
<term>Killer Cells, Natural</term>
<term>Leukocytes, Mononuclear</term>
<term>Myeloid Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hepatitis C</term>
<term>Killer Cells, Natural</term>
<term>Leukocytes, Mononuclear</term>
<term>Myeloid Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agranulocytes</term>
<term>Arginase</term>
<term>Arginine</term>
<term>Cellules myéloïdes</term>
<term>Cellules tueuses naturelles</term>
<term>Hépatite C</term>
<term>Lectine-3 de type Ig liant l'acide sialique</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Agranulocytes</term>
<term>Cellules myéloïdes</term>
<term>Hépatite C</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Hepatitis C</term>
<term>Leukocytes, Mononuclear</term>
<term>Myeloid Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Cells, Cultured</term>
<term>Humans</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26826241</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>196</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.</ArticleTitle>
<Pagination>
<MedlinePgn>2283-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4049/jimmunol.1501881</ELocationID>
<Abstract>
<AbstractText>The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.</AbstractText>
<CopyrightInformation>Copyright © 2016 by The American Association of Immunologists, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goh</LastName>
<ForeName>Celeste C</ForeName>
<Initials>CC</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0070-3924</Identifier>
<AffiliationInfo>
<Affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roggerson</LastName>
<ForeName>Krystal M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Hai-Chon</ForeName>
<Initials>HC</Initials>
<AffiliationInfo>
<Affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; Wide River Institute of Immunology, Seoul National University, Gangwon 25159, Korea; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Golden-Mason</LastName>
<ForeName>Lucy</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3347-4192</Identifier>
<AffiliationInfo>
<Affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rosen</LastName>
<ForeName>Hugo R</ForeName>
<Initials>HR</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1110-6914</Identifier>
<AffiliationInfo>
<Affiliation>Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO 80045.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hahn</LastName>
<ForeName>Young S</ForeName>
<Initials>YS</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-2698-9844</Identifier>
<AffiliationInfo>
<Affiliation>Beirne Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; ysh5e@virginia.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 AI07496</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI007496</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1T34GM105550</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI057591</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008715</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI098126</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM08715-14</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI057591</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T34 GM105550</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 AI066328</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D063268">Sialic Acid Binding Ig-like Lectin 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>82115-62-6</RegistryNumber>
<NameOfSubstance UI="D007371">Interferon-gamma</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>94ZLA3W45F</RegistryNumber>
<NameOfSubstance UI="D001120">Arginine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.3.1</RegistryNumber>
<NameOfSubstance UI="D001119">Arginase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001119" MajorTopicYN="N">Arginase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001120" MajorTopicYN="N">Arginine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016174" MajorTopicYN="N">Hepacivirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006526" MajorTopicYN="N">Hepatitis C</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007371" MajorTopicYN="N">Interferon-gamma</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007694" MajorTopicYN="N">Killer Cells, Natural</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007963" MajorTopicYN="N">Leukocytes, Mononuclear</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022423" MajorTopicYN="N">Myeloid Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="N">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063268" MajorTopicYN="N">Sialic Acid Binding Ig-like Lectin 3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26826241</ArticleId>
<ArticleId IdType="pii">jimmunol.1501881</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1501881</ArticleId>
<ArticleId IdType="pmc">PMC4761460</ArticleId>
<ArticleId IdType="mid">NIHMS748708</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6612-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2007 Jul;13(7):828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2009 Jul;157(6):922-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19508396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 11;342(6155):1242454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Int. 2014;2014:686984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2010 Apr;138(4):1536-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2014 Jan;37(1):66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24552712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014;3:e01659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Mar 15;184(6):3106-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20142361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 May 1;182(9):5259-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biol Int. 2008 Feb;32(2):188-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17920947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 15;64(16):5839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2013 Sep;255(1):68-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23947348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2009 Apr;126(4):458-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19278419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biol Regul. 2013 Jan;53(1):8-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23031788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2005 Sep;35(9):2608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16106370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2012 Dec;280(2):182-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23399839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2006 Mar;44(3):446-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16310275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 1997 Sep;26(3 Suppl 1):15S-20S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2013 Apr;57(4):1314-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23150092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Immunol. 2013 May;33(4):798-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23354838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2014;32:609-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2014 Apr 23;5:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2006 Feb;130(2):435-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16472598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2011 Apr;54(4):746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21129806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2009 Mar;9(3):162-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2003 Aug;15(4):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12900277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Transplant. 2012 Feb;12(2):298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22044693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2000 Apr;174:5-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10807503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9294-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5640-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2011 Oct;141(4):1231-9, 1239.e1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21741920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Biol Ther. 2005 Sep;5 Suppl 1:S49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16187940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2010 Nov;139(5):1774-83, 1783.e1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2012 Feb;55(2):343-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21953144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 May;7(5):456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18460336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2010 Nov 11;116(19):3689-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21071612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2014 Aug;15(8):749-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24973821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2012 Sep;76(3):294-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22671952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 25;286(12):10847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Pat. 2011 Dec;21(12):1811-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Jun;21(6):591-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25962123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2014 Jul 21;206(2):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25049270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2006 Jul;44(1):126-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16799989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1998 Apr;10(2):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9561852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr Biochem. 2012 Sep;23(9):1178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22137265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2015 Apr;33:55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(6):1742-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11865054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 1999 Jun;10(6):735-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10403648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Immunol Ther Exp (Warsz). 2011 Dec;59(6):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2008 Jan 21;205(1):233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18195076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2013 Sep;255(1):210-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23947357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2009 Jun 15;124(12):2886-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19253371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2013 May;10(3):202-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Apr 18;38(4):633-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):502-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2012;19(22):3748-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22680924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):728-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21187373</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Virginie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Lee, Hai Chon" sort="Lee, Hai Chon" uniqKey="Lee H" first="Hai-Chon" last="Lee">Hai-Chon Lee</name>
</noCountry>
<country name="États-Unis">
<region name="Virginie">
<name sortKey="Goh, Celeste C" sort="Goh, Celeste C" uniqKey="Goh C" first="Celeste C" last="Goh">Celeste C. Goh</name>
</region>
<name sortKey="Golden Mason, Lucy" sort="Golden Mason, Lucy" uniqKey="Golden Mason L" first="Lucy" last="Golden-Mason">Lucy Golden-Mason</name>
<name sortKey="Hahn, Young S" sort="Hahn, Young S" uniqKey="Hahn Y" first="Young S" last="Hahn">Young S. Hahn</name>
<name sortKey="Roggerson, Krystal M" sort="Roggerson, Krystal M" uniqKey="Roggerson K" first="Krystal M" last="Roggerson">Krystal M. Roggerson</name>
<name sortKey="Rosen, Hugo R" sort="Rosen, Hugo R" uniqKey="Rosen H" first="Hugo R" last="Rosen">Hugo R. Rosen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26826241
   |texte=   Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26826241" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020